
DRAGON32
MACHINE CODE

FOR BEGINNERS·

c□mPUOAT
i

DRAGON 32

MACHINE CODE

FOR BEGINNERS

(C) 1983 COMPUDAT

ACKNOWLEDGEMENTS

Many thanks go to nave and Ray of LEICESTER
MICRO CENTRE for lending me the word processor
to write this book: to Chris for practical help
and to Kay and Paul for keeping out of my wayl

A
B
C

CONTENTS

Preface 1

Why Machine Code 3

What's a Memory Map 5

Bits Bytes Pokes & Peeks 13

The Inst~uction S~t 17

A Programme at Last 21

More Instructions 23

Addressing Modes 27

Some More Tricks 33

A Screen Display 37

Programmes 43

Samun Pie 57

The Bottom End 65

More Programmes 67

Writing Programmes 77

Assemblers & Disassemblers 79

Odds & Ends

APPENDIX

Common Operation Codes
Post Bytes
Some Useful Rom Routines

83

85
89
90

PREFACE

After the first flush of excitement on
opening my brand new Dragon 32 computer was over
and I'd programmed many a horrendously slow
Space Invaders Game in Basic I began to hanker
after the real thing. Machine Code
Prograrnmingll That's for - me I thought. I'll
just pop out and get a book about it. That's
where the trouble started.

The precious few books that I could find
all assumed you had a maths degree, an IQ of at
least 205 and an intimate knowledge of such
strange phrases as Extended Indirect Addressing,
Non Maskable Inputs and, worst of all, FIRQ and
Nibble.

There was nothing that started right at
the beginning and spoke in simple terms. This
may be all right for the new breed of computer
whizz kid but for someone as long in the tooth
as me something else was needed.

It is with this sort of problem in mind
that I have written this book. I hope it makes
your entry into the fascinating world of Machine
Code a little less tortuous than mine.

I'm assuming that you have access to a
Dragon 32 computer, understand Basic programming
reasonably well and have infinite patience.

I always find I can understand something
a lot easier if I am shown a practical example
so this is the system I've adopted in this book.
we will learn Machine Code by doing ·lots of
small practical programmes. step by step and
later on I'll show you how to put these together.
to form quite complex but easily understood.
programmes.

1

In order to make things easier to
understand I've had to over simplify the amazing
workings of the Dragon. I shall not apologise to
the purists, who this may upset,. because I
believe they cause all the confusion in the
first place.

Don't forget, you don't need to know
anything about Machine Code to use this book. I
have assumed you have no previous knowledge at
~11. When you have finished this book you will
not be an expert programmer but you will have a
good basic understanding of Machine code, be
able to write useful programmes and be ready to
progress to more advanced work.

Always remember, especially with Machine
rode programmes; "Banging and swearing at a
computer never helpsll But it does make you
feel better."

2

WHY MACHINE CODE

What is the use of Machine Code
and why is it better than Basic programming?
Well in many cases It's not better than Basic.
It's complex, takes a long time to write and
It's a lot more difficult to debug if you make a
mistake. But having said that, programmes
writen in Machine Code(M/C) run a lot faster
than Basic programmes .so if ·you want to write
fast action arcade type games you need to use
Machine Code. Also there are lots of tricks you
can do using M/C that aren't possible in Basic.
Let's try a few:- ·

switch on your Dragon and type the following:-

PRINT MEM and press the ENTER key.

24871 will appear on the
screen. That's the amount of free memory you
can use. Not 32000 as you might have thought
because a larg~ amount of memory in the computer
is reserved for High Resolution Graphics which I
found a bit disappointing when I found out: but
never fear, we can steal that extra memory back.
Type the following:-

POKE 25,6
Nothing happens.

and press the ENTER key.

Now type NEW and press the ENTER key and again
nothing happens but now if we type:-

PRINT MEM and press the enter key

31015 appears on the screen. 6k of
extra memory for you to use and that's near
enough to 32k for me. Don't worry about how it
works I'll explain that later.

Don't worry about all this Poking, it

3

definitely can't damage your computer in any
way. Poke, by the way, tells the computer to
store something in a certain part of it's
memory. More explanations later.

Now try this. Plug in your tape
recorder to your Dragon but don't put in a tape.
Press the rewind button instead. Now type the
following:-

POKE 65313,60 and press the ENTER key.
Your tape motor will burst into life. This M/C
instruction is the same as the Basic MOTORON
command. Now type:-

POKE 65313,52 and press the ENTER key
and the motor will stop. Now try typing:-

POKE 65495,0 but before you press the
enter key look at the flashing cursor and see
how fast it is flashing. As soon as you press
the ENTER key it begins to flash much quicker.**
You will also find basic programmes will run
much faster but you will not be able to LOAD or
SAVE any programmes until you press the reset
button. on some computers this does not work.
Don't worry if it dosen't, just switch off and
on again.

Clever isn't it. Now
machine and read on, there are
be revealed11

switch off your
more secrets to

**There is some controversy about whether this
command can damage your machine. All I can say
is I use it a lot and my Dragon's fine.

4

WHAT'S A MEMORY MAP

At this point in time we need to look
inside your Dragon. Don't panic, you won't need
a screwdriver. We're going to examine your
Dragon's memory.

The mass of electronic wizardry inside
your computer can be divided into the following
blocks:-

! The Central Processing Unit or CPU that
does all the clever work and calculating and is
really the heart of the computer. In the Dragon
32 it's a silicon chip called a 6809E and is one
of the most advanced 8 Bit microprocessors in
the world. It's like a brain and like a brain
it needs to communicate witb tbe outside world.
To do this it needs:-

2 Input output Devices or PIAs which are
again silicon chips which the Central Processing
Unit(CPU} uses as it's eyes, ears and mouth.
They allow you to tell the CPU what you want to
do via the key board, tape or joystick and the
CPU to tell you what it's done via· the TV
screen. But a brain is of no use if it can't
remember so it needs:-

3 Memory. This is one
confusing parts of the computer
at it in some detail. There's
it's quite easy if we look at
That's what the computer does.

of the most
so we will look

no need to worry
it step by step.

The memory of the computer is where we
store all the information the computer needs and
as it needs many thousands of pieces of
information we must be very careful where we
store them or they might get lost. If we think
of the computers memory as a very long street
with houses on it then in each house we can

5

store one small piece of information. we can
remember where we stored this information
because each house will have a number: it's
address or as we shall call it it's "MEMORY
ADDRESS". The Dragon has a very long street.
we'll call it Memory Lane (sorry about that).
It has 65,536 separate houses or Memory
Addresses (64k).

In the earlier example when we typed:­

POKE 25,6 what we were in fact doing was
telling the Central Processing Unit (CPU) to go
to Memory Address number 25 and store in it the
number 6. This it did and, as we saw, it
released more memory space for us to use. More
about this later. First we must look at this
memory in more detail.

I have said that the Dragon has over
65,000 memory addresses but you know that we can
only use 24,000 or 24k of these. What's
happened to the other 40,000? To explain this
let's look at Fig 1. This is a map of our
Dragons street of memory addresses. The
addresses start with Oat the top and go all the
way down to 65,535 at the bottom. (To a
computer, 0 is a number, so counting always
starts at O not 1.) we will call it by it's
proper name:- "A MEMORY MAP".

The chart in Fig 1 shows the following:-

l The Memory Addresses.
in blocks because for the time
interested in how the computer
its memory. Looking at what
address does comes later.

I have put these
being we are only

uses section~ of
each individual

2 The Hexadecimal Address. Hexadecimal or
aex numbers are just a different way of
expressing a decimal number. we will need to
learn these later but for the time being we will

6

llez:-.ory Address What it does
Dec Hex

Q

1023
1024

1535
1536

7679
7680

0000

A

03FF
0400

B

05FF
0600

C

1DFF
1EOO

D

32767 7FFF
32768 8000

E

49151 BFFF
49152 cooo

F

65279 DFFF
65280 FFOO

G

65535 jFFFF

System Use

Used by computer to store
what is to be displayed
on screen (normal)

Used to store High Res.
screen display

Used by you to store tour
programs and variables

Basic Interpreter
Used by computer to
convert Basic

Reserved for Cartridge
or expansion

System Use

EIG 1
7

Mern Type

1k Ram

Ram

6k Ram

24k Ram

· 16k Rom

16k

:

½k'

ignore them and use the more easily understood
decimal numbers.

3 What it does. This shows roughly what
use the computer makes of each block of memory
addresses or locations. we will be looking at
each block in detail.

4 Approximate amount of memory. This
shows approximately the size of each block of
memory addresses or locations and is expressed
in 11 k 11 or thousands of memory addresses. lk
means 1 thousand memory locations in computer
jargon. Unfortunately it's not that simple.
For reasons, that I hope will become obvious;
1,000 to a computer is infact 1,024. I have
said that the Dragon has 64k of memory
addresses. If you multiply 1024 by 64 you will
get the magic figure 65,536.

5 Type of Memory. I keep saying that the
Dragon has 64k of Memory Addresses. This is not
the same a ·s saying the Dragon has 64k of Memory.
What it means is that the Dragon has the ability
to use or address 64k of memory. What the
designers of the Dragon have done is to split
this 64k of memory addresses into blocks that
the central Processor (CPU) uses in different
ways.

There are 2 main types of Memory that we
are concerned with:-

A Random Access Memory or RAM. This type
of memory consists of silicon chips that can
store information. we need not concern
ourselves with the electronics of how it works
just as long as we imagine .it as part of our
street of addresses. These addresses we can use
or access to store information. we can put
information in or take it out in a random
manner. we can also alter the information in
each address.

8

B Read Only Memory or ROM. This again
consists of silicon· chips that form part of our
street of addresses only this time we can only
Read the information in each address. We cannot
put information in or alter it. The information
in the ROM silicon chips is physically burnt in
during manufacture. This means that if the
Dragon is switched of the information contained
in ROM is not lost whereas anything contained in
RAM will be gone forever.

If we look at section "A" of the chart
we see it uses memory addresses O to 1023 {The
first memory location is called O not 1 and the
last is 65~535. This gives a total of 65,536).
It is allocated, by the designers of the Dragon
for, system use. What this means is that the
CPU needs a certain amount of memory for it's
own use. In here it stores information about
what the computer is doing. Whether the printer
is being used, where the basic programmes are
stored and a host of other information.
Normally, when we use Basic, we are not aware of
this section because the CPU looks after it but
if we use Machine Code we can access this
section and store information in it that will
make the CPU do what we want it to do not what
it wants. we have already done this. The CPU
normally only gives us 24k of memory addresses
to store our programmes in. By storing the
number 6 in memory address 25 {which is part of
section "A") we forced the computer to give us
more memory fo~ storing programmes.

section "B" is used by the CPU to store
information that will be displayed on the screen
in the Low Resolution or Text Mode. To do this
it uses a system similar to the PRINT@ GRID in
the back of the Dragon's Basic Manual. Here the
screen is divided into boxes numbered Oto 511.
The CPU thinks that memory location 1024 is
equal to box number O, memory location 1025 is
equal to box number 1 etc. through to memory

9

_ocation 1535 being equal to box number 511 •
. ,gain the CPU normally controls this section but
~e can use it with Machine Code. Open your
)ragon Basic Manual at Appendix A.

This shows the ASCII codes for all the
characters that can appear on the screen. ASCII
code numbers are a standard set of numbers
~!located to the characters that the computer
.ises and are supposed to be the same the world
,.'Jver.

If we type, on the Dragon, POKE 1230,65
1-:; nd press the ENTER key the letter A will appear
~n the centre of the screen. What we have done
i s to store the ASCII code for A {65) in memory
:ocation 1230 and the CPU has automatically
~ssumed we want to display it on the screen. We
; an use this to place any character at any point
cm the screen. Experiment by POKE ING different
ttumbers into memory address 1230. Just change
t he number after the comma to the ASCII code
:r~:nber you want to appear.

using this method we can put a character
in the bottom right hand corner of the screen
~ithout the screen automatically scrolling up a
:;.ine. Just type POKE 1535, 65 and see what
happens.

This ability to make characters appear
;n the screen is one which we will use a lot
vhen we begin to program in Machine Code.

section "c" is very similar to section B
qecause the CPU uses this to store information
:that it wants displayed on the High Resolution
~reen. If we type POKE 2000,65 we can store
-~is information in the High Resolution area of
.1~mory. It will not appear on the screen
Jecause we have not asked the CPU to go to the
~igh Resolution Display Mode yet.

10

The size of this area can be increased
as we use more pages of graphics(see page 92 of
the Dragon Manual) and when it does it borrows
memory addresses from section 11 D11

•

section 11 D11 is the area that we use the
most. In it the CPU stores all the Basic
programmes and variables that we type in at the
keyboard. we will also be using it to store our
Machine Code programmes but as we shall see it
is not the only place that we can use.

section "E" is very interesting. In it
is stored the Basic Interpreter. The CPU, which
as we have said does all the clever work in our
computer, can only understand Machine Code. The
Basic interpreter is a set of instuction, writen
in Machine Code, that converts the Basic
commands that we type in on the keyboard into
Machine Code that the CPU can understand. The
instuction are like a set of subroutines that
convert each Basic word into M/C.

These instructions are in Read only
Memory or ROM and as they are burnt in during
manufacture we cannot alter them. That does not
mean, however, that we cannot use some of these
instructions in our M/C programmes.

section "F" caused me the most confusion
when I first became interested in M/C.
cartridge Memory it said in my book but I
couldn't work out why I couldn't store anything
in these memory addresses.

I said before that the Dragon has 64k of
Memory Addresses not 64k of Memory. This
section shows what I meant. This area is like
part of a street where no houses have been
built. The plans are all drawn and addresses
allocated to the houses but until we build the
houses we have nowhere to store our information.

1 1

When we plug a cartridge into the Dragon
we add these houses. The memory we add,
however, is ROM so the computer can only read
the instructions stored there and carry them
out. we could, however, plug RAM memory into
the Dragon expansion port and then we could
store infonnation there. This part of the
memory map is very useful if we want to add
other devices to the Dragon.

Last of all we have section "G" which
like section A is reserved for System use. But
once again we can access it to make the computer
do what we want.

That is a ver_y brief look at the Memory
Map of the Dragon 32 computer. we will look at
it in more detail as we start to programme but
first we need to learn what infonnation we can
store in these memory addresses and how it
affects the cotnputer.

12

BITS, BYTES, POKES and PEEKS

The electronics of the Dragon can only
understand two things. on and off. so, to talk
to it we use Binary Numbers. Don't panic, we're
not going to dwell on this too long but we do
need to know about sets .of Binary numbers. Lets
look at a decimal number and how it is made up:-

_..- 2056 -----
2 thousands / " 6 units

0 hundreds 5 tens

A Binary number does not count in 10s,
as we do, but in 2s. When we count in Decimal,
every time we count to 10 we carry 1 into the
next column and so on. In Binary, we count to
2. This makes Binary numbers look very long and
cumbersome but computers find them easy. Let's
look at a Binary number:-

1 128--10110011---l unit
O 64 ~ / ~ 1 two

1 32 "\ 0 fours
1 sixteen O eights

If we add all these together we find
that the Binary number 10110011 is equal to the
decimal number 179 (128+32+16+2+1). All we
really need to understand· about this is that the
computer can represent this by saying that O =
off and 1 = on. It can then use a simple set of
switches to represent a number. This may appear
difficult to us but a computer can alter it's
switches so quickly it doesn't matter.

The Binary number above consists of 8
figures. Each one is called a Bit and 8 Bits
together (as the number above) is called a BYTE.
4 Bits or half a Byte is called, would you
believe it, a NYBBLE. If we add it up the
highest number we can write in binary using 8

13

,its or 1 Byte is 11111111 which is equal to the
:ecimal number 255.

Now the 6809E CPU used in the Dragon is
a n 8 Bit device. That means that it handles
i t's Binary numbers 8 Bits or 1 Byte at a time.
Remember this,we will be using it later.

Binary numbers are difficult. t:.o write
and as the CPU needs 8 Bits at a time it may be
~asier to use number systems that count in Bs.
These are known as OCTAL numbers. In fact, it
i, s easier to use a sys.tem that counts in 16 s and
i s known as a HEXIDECIMAL number.

If our CPU counts 8 Bits at a time it
.:'. an count up to 255. That's the same number as
~here are ASCII codes and if our CPU counts 16
~its at a time the highest number it can count
1s 65,535. This is the number of memory
~ddresses the Dragon has. This is not a
.:oincidence. The Dragon cannot easily have
~ore memory addresses than 65,535 because it
can't count any more.

Here are a few Hexadecimal . or HEX
, umbers with decimal equivalents which may make
~t a little clearer.

''etters
:~it tle

HEX DEC HEX DEC
1 = 1 A = 10
2 = 2 B = 11
3 = 3 C = 12
4 = 4 D = 13
5 = 5 E = 14
6 = 6 F = 15
7 = 7 11 = 16
8 = 8 12 = 17
9 = 9 13 = 18

As you can see this system uses both
and numbers and although it seems a

odd it does have great advantages when

1~-

dealing with computers.

All 8 Bit numbers can be represented by
2 figures ie. FF in Hex= 255 in Decimal. 16
bit numbers can be written using 4 figure ·s ie.
FEBO in Hex= 65213 in Decimal. once you get
used to this Hex numbers are very useful but for
the time being we will stick to Decimal numbers.
When I do use Hexadecimal numbers I will put &H
in front of them. The Dragon understands this,
so should you.

You can convert Decimal to Hex numbers
using the Dragons HEX$ command (see page 70 of
the Dragon manual). You can also convert Hex
numbers to decimal using the following
programme.

10 CLS
20 INPUT X$
30 H$ = 11 &H 11 + X$
40 PRINT V'AI..i (H$)

Well that's Bits and Bytes, what about
Peeks and Pokes. If you tell your Dragon to
POKE 65312,134 it will look for memory address
65312 and store in it the number 134. It will
automatically convert these numbers to Binary so
that the CPU can understa~d them (clever thing).
Don't forget you can't Poke anything into ROM.
You won't harm it, it just ignores it.

If you type PRINT PEEK (65312) the
Dragon will go to memory address 65312, look in
and display on the screen what's stored there.
In this case 134 because we've just put it
there.

You cannot store numbers greater than
255 in any one memory address (try it and see
but don't say I didn't tell you so). This is
because the CPU is an 8 Bit device and, as we

15

said earlier, cannot handle numbers greater than
255. If you type POKE 65312,257 you will get an
error.

Now, we've done all
necessary ground work, we can
Code Instructions.

1c

the
look

boring but
at Machine

THE INSTRUCTION SET

I have said that the 6809 CPU is the
clever bit of the Dragon that does all the
calculating and controls how the computer works.
But how does it do this and how does it know
what to do? The answer to this is simple. You
tell it what to do by giving it a set of
instructions to follow. The 6809E
microprocessor (CPU) has 59 instructions that it
can obey and by using them in different ways
this can be increased to over 1,400. You can
store a list of these instructions in the
computers memory and what the CPU will do is to
go to a memory address, look into it, read the
instruction stored there and carry it out.
There are many instructions it can perform. For
instance, the instruction in the memory might
tell it to go to another memory address, in the
part of the memory map reserved for screen
display (section B Fig 1) and there store the
ASCII code for 11 A 11

• This would cause the letter
"A" to be displayed on the screen.

Before we look at the Instruction Set in
detail we need to look inside the CPU and see
what it contains and how it works.

I should point out that different types
of microprocessor have different internal
structures and the instruction set for the 6809E
would be different to, for instance, the Z80A
used in the Sinclair Spectrum. The two sets of
instructions cannot be interchanged. Therefore
M/C programmes for the Dragon will not work on a
Spectrum or any other make of machine and vice
versa. we can, however, once we understand how
the machine works, get programmes written for a
6809E CPU to work on another machine using the
same CPU (a Tandy Colour computer for instance)
but we will have to alter the programme to take
account of the the different memory map layout

·nd controls of the other machine.
Fig 2 shows a block diagram of the

. nside of the 6809E microprocessor.

FIG 2

6809E INTERNAL STRUCTURE

D

Accumulator A Accumulator

Register X

Register y

Programme Counter PC

stack counter s

user Counter u

Direct Page
Register DP 8 BIT
condition Code
Register cc 8 BIT

B 8 BIT

16 BIT

16 BIT

16 BIT

16 BIT

16 BIT

we can see that the CPU contains several
~oxes called Accumulators and Registers. The
~ay they work is a little bit like the memory
~ddresses contained in the memory map. They act
: ike stores that the CPU can put information in,
~ake it out and move it all about (just like
i oing the Hokey Cokey). Also the CPU can act on
i ts own internal Registers and Accumulators and
~lter the contents in line with the instructions
'.~at we give it. Let's look at each part in
Jetail.

ACCUMULATORS A and Bare, as far as we
~,re concerned at the moment, identical. Each

18

one can hold an 8 Bit or 1 Byte number. we can
put numbers into these and manipulate them using
the CPU's instruction set. As each accumulator
can only hold an 8 Bit or 1 Byte number this
means that we can only work on 1 Byte at a time.
If we want to work on a longer number we must
split it up into sections 1 Byte long.(This is
easy to do if we use Hexidecimal numbers but not
so easy in Decimal)

The 6809E is rather clever in that it
can combine accumulators A and B (calling them
Accumulator D) and for certain operations treat
it like a 16 Bit or 2 Byte number. This gives
it considerable power over an 8 Bit micro. The
way it combines these accumulators is to store
the first Byte of the number in accumulator A
and call this the Most Significant Byte (MSB)
and the second part or Byte is placed in
accumulator B and is called the Least
Significant Byte (LSB). ie:-

10110110 : 10101101 16 Bit number
MSB LSB

The X and Y REGISTERS again can be
considered, for the moment, as being the same.
They can store 16 Bit numbers and are usually
used to store memory addresses associated with
the numbers in the accumulators. For instance,
we can tell the CPU to go to a memory address
stored in register X and store in it the number
in accumulator A.

This may seem a little long winded but
as we shall see later on we can manipulate these
internal registers to give us very powerful
command facilities. Also we can tell the CPU to
go to the memory address stored in .· the Y
register and read the instruction stored there.
This instruction may tell it to go to another
memory address, get the number stored there and
act on it in some way, maybe add to it or

1C . ~-

subtract and then store the result
memory address. The CPU performs
tasks like this.

in
most

another
of its

This may appear to be a tedious way of
performing, when, using Basic, you just type
PRINT 2+3, and believe me it is tedious. Don't
say I didn't warn you that M/C programmes are
very long to write. And as with Basic
programming we have to be very careful to write
the instructions in a clear and logical manner
so with M/C programmes we have to be doubly
careful.

The PROGRAMME COUNTER (PC) is used by
the CPU to remind itself where in the programme
it is. It contains a 16 Bit number that usually
points to the next memory address of the next
instruction the CPU will use.

The STACK COUNTER (S) can again be used
by the CPU to keep track of itself and is
usually used when the CPU jumps to a subroutine
to tell it where to return.

The USER
the programmer,
may want to use.

STACK {u) can be used by you,
to store memory addresses you

The DIRECT PAGE REGISTER{DP).The
computers memory map can be thought of as a book
with 256 pages each containing 256 memory
addresses listed in numerical order, hence
address 200 would be on page 1 and address 270
on page 2. The DP register keeps a track of
which page of addresses the CPU is using. Its
use will become clearer as we start programming.

The CONDITION CODE REGISTER(CC). This
register keeps a record of the condition of the
CPU and we will learn more about it later.

But now let's write a programme at last.

20

A PROGRAMME AT LAST

Let's look at one of the CPU's 59
instructions:-

LDA

Great, at long last a machine code
instruction. But what does it mean? Actually
it's quite simple when you know. It's a
mnemonic, which is easier to understand than
say,or memory jogger for the instruction" Load
Accumulator A" with a number.

Now how do we get this instruction into
the CPU? Again it's simple when you know how.
The CPU can only understand numbers, so first
we must represent LDA by a number. This has
already been done by the CPU manufacturers and
in appendix A are listed several instructions
with the numbers that represent them. In this
case the number representing LDA is 134. Now
we need to get this number into the CPU. In
fact it's easier to get the CPU to come to it~
To do this we will store the number in a memory
address by typing POKE 2000,134. This will
store the number 134 at memory address 2000. If
we now type EXEC 2000 the CPU will go to memory
address 2000, read the instruction and carry it
out.

But now we have a problem. we have told
the CPU to load it's accumulator A but with
what? Well in fact we have told it what. There
are several different ways of using the LDA
instruction. we have used the one called "
Immediate Addressing." This means that the CPU
will automatically assume that the number it is
to load in accumulator A is stored in the next
memory address. That is address number 2001.
When we type EXEC 2000 the Programme counter
{PC) register will contain 2000. The CPU will

21

go to this address and read the instruction
~134). This will tell it to load accumulator
A.The CPU will then go to address 2001 and store
this number in it's A accumulator.

How does the CPU tell the difference
between instruction numbers and ordinary
numbers? It doesn't. It relies on us to get
things in the right order. If, for instance,
i n the last example we stored instruction number
~07 in memory address 2001 the CPU would think
i t was an ordinary number because it's last·
instruction (134 stored at address 2000) told it
it was. As you can see we must be very careful.

And now, I'm _afraid, we must learn
some boring conventional terms that the computer
world has decided to adopt.

The instruction code is called the
OPERATION CODE and is usually expressed as a
ctexidecimal number • . Thus the Operation code for
LDA is &H 86 (don't forget I said I'd put &Hin
front of all Hexidecimal numbers so that you
recognise them).

The number to be acted on (stored at
3ddress 2001 last example) is called the OPERAND
3nd the memory address that the CPU will go to
to find it is called the EFFECTIVE ADDRESS.

That will do
t here is more to come.
some more instructions.

for now
But first

22

but I'm afraid
let's look at

MORE INSTRUCTIONS

We will now look at a few more
1

. . comrnands
and give a brief description of how each one
works. Then we can write a short programme to
show how they all fit together.

STA

This instruction tells the CPU to store
the contents of it's accumulator A in a memory
address. Again we can ask the question, as we
did with LDA, how does the CPU know what address
to use?

When we talked about the instruction LDA
we said we were using "Immediate Addressing"
mode and this meant that the number we were to
load into accumulator A would be in the next
memory address after the address containing the
instruction code. For the instruction STA let's
use a different mode called "Extended Direct
Addressing".(we will be looking at these
different addressing modes in more detail in the
next_ chapter so don't worry if you can't grasp
it yet.)

The Operation Code (Instruction Code)
for STA,in this addressing mode, is 183 or in
Hexidecimal &H B7 (Donrt forget the &H). The
memory address will be found in the next memory
address after the one containing the Operation
Code. This is not quite true because as the
memory address will be a 2 Byte or 16 Bit number
it will need 2 memory addresses to store it.

Let me try and explain that: _. a bit
better. When we were looking at how the .. A and B
accumulators combined to store a 2 Byte or 16
Bit number I said that the first part · of the
number (MSB) was stored in A and the .. - second
half(LSB) was stored in B. We do the same after

23

the instruction STA. The first address the CPU
looks at will contain the operation code 183
which will tell the CPU to store the contents of
it's accumulator A in a memory address. The
next address will contain the first half(MSB) of
the memory address that the CPU is to store the
contents of accumulator A in and the next
address will contain the last half(LSB).

1st address
2nd address
3rd address

3000 contains 183 operation code
3001 contains MSB 'l address to
3002 contains LSB~ store A

The instruction STA therefore requires 3
memory address to give the complete information
the CPU needs.

CLRA

This instruction erases the contents of
accumulator A and leaves it empty. The
Operation Code is 79 or in Hex &H 4F. As this
instruction only affects the CPU itself and does
not refer to another memory address, it only
requires 1 memory address. This is known as
"Inherent Addressing".

The last instruction we shall look at
for the moment is:-

ADDA

This adds a number to the number already
stored in accumulator A. The Operation code we
will use is 187 or in Hex &H BB. The addressing
mode we are using is "Extended Direct
Addressing" again. This means that the CPU will
have to look in the memory address given after
the instruction to find the number it is to add
to accumulator A.

Let's write a short programme using the
instructions we have learned so far.

24

In this program we will add a number t o
a number we have already stored in a memory
location, then place it in the section of memor y
reserved for graphics display so that the
computer thinks it's an ASCII code and displays
it on the screen. We will make the letter s
appear (ASCII code 83).

This will be the order of instructions:-

1 Store number 43 in memory address 25000
2 Clear accumulator A ·
3 Load accumulator A with number 40 which
is stored in the next memory address(20002).
4 Add the number stored in memory address
25000 to the number already in accumulator A.
5 Store the new contents of accumulator A
In memory location 1200 (part of the graphics
display area).

This is how we do it. Type:-

POKE 25000,43

POKE
POKE
POKE
POKE
POKE
POKE
POKE
POKE
POKE
POKE

20000,79
20001,134
20002,40
20003,187
20004,97 ~
20005,168)
20006,183
20007,4 J
20008,176
20009,57

Stores 43 in location 25000

operation code to clear A
Operation code for LDA
Number to be loaded in A
Operation code for ADDA
Address were number
is stored
Operation ·code for STA
Address were result
is stored
RTS returns control to basic

After you've typed this in press the
CLEAR key to clear the screen. we can then tell
the CPU to go to memory address 20000 and carry
out the instruction it finds there. To do this
just type EXEC 20000 and press the ENTER key.
LOw and Behold, a letters appears in the middle
of the screen which, amazingly, is what's
supposed to happen. The OK prompt will appear

25

E

back on the screen meaning that the Dragon has
completed your Machine Code routine and returned
control of the computer to the Basic
Interpreter. This was done by the RTS
instruction. The Dragon has treated the M/C
routine as a it would a Basic subroutine but if
we did not put the RTS instruction at the end of
o ur program the Dragon would not know what to do
after it had run the M/C and would have crashed.

You may also be confused by locations
2004,2005 and 2007,2008. These are supposed to
show 16 BIT (2 BYTE}. memory addresses but in
fact they show 97,168 and 4,176. If, however,
we convert these numbers to HEX they becorne:-

&H 61,AB and &H 04,B0

Now go to your Dragon and type:­

PRINT &H 61A8 and press ENTER

25000 will appear

Try PRINT &H 04B0 and 1200 will appear

It is easier to express 16 BIT memory
addresses as 2 one BYTE Hexadecimal numbers so
start practicing converting Decimal numbers to
Hex and vice versa. we shall be going over this
subject again later so don't worry to much if
you haven't understood.

26

ADDRESSING MODES

What are these addressing modes I keep
going on about? They're very important that's
what they are. If you can master addressing
modes then you're 80% of the way to mastering
machine code.

Addressing modes can best be described
as, where the CPU goes to find or store the data
it needs to perform a machine code instruction.
Lets look at it step by step.

In the last example
instruction LDA which we said
load it's A acc~~ulator with
out where this number is the
know what addressing mode you
For instance:-

we used the M/C
tells the CPU to

a number. To find
CPU also needs to
want it to use.

IMMEDIATE ADDRESSING tells the CPU that
the number it needs to load into the A
accumulator is stored in the memory address
immediately following the memory address that
contained the operation code (LDA instruction).

Example:-
Memory address 25000 contains LDA
Memory address 25001 contains number 43

The CPU will go to memory address 25000
were it will see that it has to load its A
accumulator with the number 43. we say that the
"EFFECTIVE ADDRESS" or the memory address were
the data is found or stored is immediately after
the operation code. Hence Immediate Addressing.

EXTENDED DIRECT ADDRESSING tells the CPU
that the "Effective Address", or the memory
address were the data it needs is stored, is
pointed to by the next memory address. It sounds
a little confusing dosen't it. Let's look at it

27

-3 ain:-

In Immediate Addressing the next memory
.ddress, after the operation code, actually
:ontains the data the CPU needs.

In Extended Direct Addressing the next
~emory address actually contains the location of
~other memory address that the CPU must go to
o find the number it needs.

·c:.xample :-
Memory address · 20000 contains LDA
Memory address 20001 contains another

·;Jemory address 15000
Memory address 15000 contains the number

6

The CPU will go to memory address 20000
«ere it will see that it has to load its A
Accumulator with the number stored in memory
· ::>cation 15000 (number 86) .

As you can see this is a very useful
~ddressing mode because it allows the CPU to
:ove about all over the memory map collecting
~n formation where it likes. If we use the STA
:,nstruction in this addressing mode, which we
J id in the last programme, we can write a
machine code routine in part D of the memory map
(see page 7) that will store data in part B of
~:.he memory map (the screen display area). This
~s one way that we can use machine code to
·; isplay information on the screen. ◄

You may have noticed I said that the
~emery address following the operation code
~ontained the memory address that the CPU must
10 to in order to collect the data it needs. In
~act a memory address will be a 16 BIT {2 BYTE)
~umber and as each memory location can only hold
an 8 BIT (1 BYTE) number we will have to use the
Qext 2 memory locations after the operation code

28

to contain the address the CPU must go to (the
Effective Address).

Example:­
Mernory
Memory
Memory

where the data

address 20000 contains LDA
address 20001 J
address 20002 contain address
is stored.

How does the CPU know which addressing
mode it is to use? It's simple really. As we
said before, each M/C instruction is represented
by a number. We only use the rnrnenornic LDA as
it's easier to remember.

In Immediate Addressing the number for
LDA is 134

In Extended Direct Addressing the number
for LDA is 182

Just give these numbers to your CPU and
it works the rest out for it's self. Clever
little thing.

Let's do a practical example to show the
difference in the 2 different modes. We'll
write a short program to write "HELLO" on the
screen. How excitingll To make it a little
different we'll put it on the bottom line but
without the screen automatically scrolling. Try
doing it Basic first.

we need to use the Dragon manual
Appendix A which shows the ASCII character
codes. use the "With Shift Key" column.

we are going to load the A accumulator
with numbers that represent the ASCII characters
then store the contents of the A accumulator in
the area of memory used for the screen display.
The LOA operation code will use Immediate
Addressing and the STA operation code will use

29

Extended Direct Addressing.

This will be the order of instruction:-

1 LDA with 72 (ASCII H)
2 STA at memory address 1520(screen display)
} LDA with 69 (ASCII E) 4 STA at memory
address 152l(next address on screen)
5 LDA with 76 (ASCII L)
6 STA at memory address 1522(next address on
screen)
7 STA at memory address 1523(note accumulator A
already contains 76 so we don't need to load it
again)
8 LDA with 79 (ASCII o)
9 STA at memory address 1524
To RTS returns control to basic

Note that the LDA operation code wipes
out what was previously in the A accumulator
wereas STA leaves the accumulator intact (lines
6&7).

Now we can load this programme into the
Dragons memory using the Poke command as before
but to save us a lot of typing we will write a
short program in basic to do it for us.

Enter the following Basic programme:-

10 CLS
20 INPUT"ENTER START ADDRESS";S
30 FOR P=S TO 32000
40 INPUT N
50 POKE P,N
60 NEXT P

This will ask us to enter the number of
the memory address where we want the M/C
programme to start. It then uses a FOR NEXT
loop to poke code numbers into memory as we
input them. You will have to use the BREAK key
to stop the programme after entering the last

30

number.

Run the above programme and when it ask s
for the start address enter 18000. You ca r,
start the programme any where you like between
10000 and 30000 {try it and se~). That' s
because this programme is Position Independent,
which means it will run anywhere in memory
{within reason). Most M/C programmes are not.
Then enter the following list of number s
{explanations are listed on the right).

Number
134
72
183

;40 ~
134
69
183

;41'
134
76
183

;42 J
183

;43]
134
79
183

;44 J
57

Explanation
LOA Immediate Addressing
with 72 {ASCII H)
STA Extended Direct Addressing
2 Bytes to give memory address
{next chapter explains fully)
LOA
with 69
STA
memory address 1521

LOA
with 76
STA
memory address 1522

STA
memory address 1523

LOA
with 79
STA
memory address 1524

RTS returns control to -Basic

Press BREAK key

1520

Now press
EXEC18000

the CLEAR key and type

or whatever start address you used

31

HELLO will appear on the bottom line.

some things to notice are that HELLO
\vill always appear on the bottom line no matter
\-.,

1here the flashing cursor is. Also typing NEW
will have no effect on your M/C program. It
·,vill sit stubbornly there in memory until you
e ither switch off or write over the top of it by
·r, istake. If you started at address 18000 then
l eave it there for the time being and we'll use
i t later . .

You will no · doubt have noticed how
t edious it was entering a new memory location
~very time we used STA. Well, we can use
another addressing mode, called AUTO INCREMENT,
t o help us a lot. Turn to the next chapter for
more startling revelationll

32

SOME MORE TRICKS

I'm afraid you've been conned. You've
come rushing to this chapter expecting to find
out all about Auto Increment but first you have
to learn a little bit more about Hexadecimal
numbersll In the last example we used 2 memory
locations, after the STA operation code, to
store memory address 1520 but we didn't put 1520
in these locations, we put ?,240. in order to
explain why we must first convert the decimal
number 1520 to Hexadecimal and we will use the
dragon to do it:-

Type:- PRINT HEX${1520) and press ENTER

5F0 will appear which can be written as
05F0

This is the Hexadecimal equivalent of
1520 and if you put &H infront of it the Dragon
will treat it in just the same way as 1520. Try
typing:-

PRINT &H05F0 + 10 and press ENTER

1530 will appear which is the same as
1520 +10.

I hope you agree because we are in
serious trouble if you do·n • tl

Now Hexadecimal numbers are based on 16,
not 10 like ordinary numbers, and that means
it's very easy to fit them into 16 BITS {2
BYTES). we can now split our Hex number OSFO in
half. The first half, OS, we will call the Most
Significant Byte (MSB) because it's in .front and
the second half, FO, we will call the Least
Significant Byte {LSB) because it's at the end.
In a M/C programme we can put the operation code
{STA) in the first memory location, the MSB (OS)
in the second memory location and the LSB (F0)

33

i n the third memory location like this:-

1emory location 18002 contains STA Extended
1irect Addressing
·1emory location 18003 contains MSB

~emory location 18004 contains LSB

Now when we POKED these numbers into the
Dragon in the last example we converted the MSB
~nd LSB back to decimal numbers. 05 Hex is, by
~oincidence, 5 in decimal but FO Hex is 240 in
.;ecimal. If you look at the last example you

.,,dll see that these ·are the numbers that we
1.1 sed. We could have POKED the Hex numbers in by
putting &Hin front of them (to tell the Dragon
t hat they were Hex) but that would have looked
;:onfusing. If you have not understood this
0ection go back and read it again as it is most
i.mportant that you understand.

Try converting a few numbers into
using the Dragon, and then splitting them
MSB and LSB. Decimal numbers less than
~ill have less than 4 figures in Hex. Just
zeros in front to make up the difference.

hex,
into
4096
put

Just think; if computers had 10 BITS in
a BYTE how much easier life would be.

As you can see, from the previous
example, STA Extended Addressing requires 3
BYTES of memory for the whole operation. The
CPU knows this and when it sees Extended Direct
~ddressing it will automatically look at the
next 2 memory locations.

This would be a suitable time to mention
the CPU PROGRAMME COUNTER. This is a 16 ·BIT
register in the CPU which keeps track of the
i nstructions to follow. For instance, in ; :the
tast example, when we typed EXEC 18000 · the
)rogramme Register will automatically be loaded
with the number 18000. The CPU will go to .~his

34

address and look at the instruction there. This
will tell it to load A with 72 but it will also
tell the Programme counter that the next
instruction will be found at memory ,,:, address
18002. After completing the LOA instruction the
CPU will go to memory address 18002 which, as we
said before, requires 3 memory locations and the
Program counter will automatically point to
18005. It does this automatically and there is
no need for you to set it (unless you want to).
It is,however, useful to know ~hat it is doing.

Now back to that AUTO INCREMENT
Addressing Mode I mentioned. This uses the X
register in the CPU (see page 18).

If we store a 16 BIT memory address in
the X register, by using the operation code LDX
(similar to LDA), we can tell the CPU to store
the contents of the A accumulator at the memory
address contained in the X register. For
instance:-

Load X with 1520
Store A at X

This would have exactly the same affect
as the last example.

This is known as INDEXED ADDRESSING MODE
and can be very useful ·if we want to keep
referring back to a memory address, say to
update a score in a game.

A variation on this is AUTO INCREMENT.
In this mode we load the X register with . a
memo~y address. we can tell the CPU to store
the contents of the A accumulator at the memory
address in X but this time it will automatically
increase X by 1 after completing the
instruction. Using the last example the X
register would now contain 1521.

35

In the last program, were we had to
store A at different memory addresses, we could
have used this addressing mode to do the job for
us instead of entering each memory address
separately.

This addressing mode is particularly
useful if we want to fill the screen with
graphic symbols or scan through a set of data,
for instance. The next chapter shows an example
of this.

To tell the CPU that we want to use Auto
Increment we use a POST BYTE. That is a BYTE of
information stored in the memory location after
operation Code. It's a bit like having a 2 BYTE
instruction instead instead of the usual 1.
Calculating Post Bytes is a little tricky so
r've dealt with it in detail in the Appendix.
Let's use this, plus a few more new
instructions, in a program to fill the screen
with graphics. Read on.

36

A SCREEN DISPLAY

Right, let's write some M/C programmes
that will show some screen displays but before
we do that we need to look at 2 more
instructions:-

CMP and BNE

CMP is used to compare one of the CPU
registers or accumulators with something. For
instance, CMPA compares the A accumulator with a
number. We will be using CMPX which compares
the contents of the X register with a number.

BNE means Branch if Not Equal and is
usually used with a CMP instruction. For
instance:- Compare the contents of the X
register with a number and branch if it is not
equal to it. It's rather like the Basic IF THEN
statement. IFS<> 30 THEN GOTO 100.

Let's try an example. This M/C
programme will fill the screen with small red
squares:-

! Load the X register with 1024 (top left of
screen)
2 Load accumulator A ~ith 182 (graphic symbol
for 2 red squares)
3 Store the contents of A at memory address in
X register. Increase X by 1 after doing this.
4 compare X with 1536 (bottom right of screen)
5 Branch, if it's not equal, to line 3
6 Return to Basic

In this programme we first load the
memory address, corresponding to the top left
hand corner of the screen, into the X register.
we then load the A accumulator with the number
of the graphics symbol we want to appear on the
screen. Lines 3 .4 5 then act as a loop storing

37

~e contents of A at each screen memory location
~til it reaches the bottom right corner where

~he program is complete and control is returned
: o Basic.

Let's try it. Run the program we used
: or entering M/C before and enter start Address
·aooo. Then enter the following numbers:- (see
~f you can recognise any of the instructions.
~i ve broken them up into Op code+ Data)

:4 2 4 0 - 134 182 - 167 128 - 140 6 0 - 38 249
-- 57

Press break to finish.

Now type EXEC 28000
~ee if you can time how long
-::he screen.

press enter and
it takes to fill

OK prompt appear
to Basic. our

as we wanted, but
over the top of it.
it.

The green stripe and
·)a cause we have returned
-~•r ogramme filled the screen,
~nen the green line appeared
:~ver fear we can get rid of

The Basic Interpreter is just a very
~omplex set of Machine code subroutines to
:onvert Basic, that we type in, into Machine
:ode that the CPU can understand. we can use
~hese subroutines in our M/C programmes. It
.~aves us writing our own. The M/ C subroutine we
~re interested in at the moment starts at memory
6jdress 32774 (memory map area E page 7) and
; ~at it does is checks the Keyboard to see if a
-~Y is being pressed. Note I said IS being
-·ressed not HAS been pressed. If a key is being
~~essed it will load the A accumulator with it
~.;.nd if no key is being pressed it will load the
; accumulator with zero. It's rather like the
--NKEY$ function. This is a very useful
~ broutine and we will be useing it a lot. I
,µ11 illustrate it's operation by adding it to

38

the last programme and then we shall see how it
works.

Go back to the M/C entering p~pgram we
used before and and enter Start Addr E:t,§§ 28000
then the following numbers:-

142 4 0 134 182 167 128 140 6 0 38 249 189 128 6
39 251 142 4 0 126 109 101

Press BREAK to finish then EXEC 28000

It's the same as before but with no
green line but now press any key and see what
happens. Fairly fast isn't it? You try ·writing
a programme in Basic to do that. You will have
to press RESET to return control to Basic.
You're M/C programme will still be there in
memory until you switch off.

Let's see how we did this. we'll look at
the first programme. Go back to the
explanation. Lines 1 and 2 are straight forward
and we have used them before. In line 3 we use
the STA instruction in Auto Increment addressing
mode. The operation code for this is 167. The
Post Byte we use is 128.

The CMPX instruction in line 4 has
operation code 140 which is Immediate
addressing, meaning that the number it is to
compare with (1536} is located in the next
memory address. As is it a 16 BIT (2 BYTE}
number it needs 2 memory locations to store it,
so the CMPX instruction needs 3 memory locations
altogether.

The BNE instruction, in lin,~·,;,, 5, is
rather more difficult. This will c .• e the
program to branch to another memory address if
the result of the CMPX instruction is no-t equal.
If the result is equal then the programme will
proceed in sequence. The problem comes when we

39

t ry to work out where the programme is to branch
t o.

The operation code for BNE is 38 and
t his will always be followed by another memory
address containing the OFFSET. This Offset
t ells the CPU where to branch to and the way it
does it is tied up with the Addressing Mode.
The addressing mode used by this instruction is
PROGRAMME COUNTER RELATIVE. As we have said
b efore the Programme Counter will contain the
memory address of the next instruction the CPU
i s to carry out. In the case of the BNE
i nstruction, however, the Programme counter
a ssumes that there will not be a Branch and
t herefore contains the address of the next
i nstruction in sequence. If the programme does
need to branch then the number stored in the
o ffset will modify the Programme counter so that
i t contains the memory address of the
i nstruction you want it to branch to. If, for
i nstance, you want it to branch forward 20
memory addresses then the Offset will contain
20. conversley, if you want it to branch
backwards 20 places then the Offset will contain
-20.

Unfortunately it's not as easy as that.
For a start you can only branch back 126 places
or forwards 129 using this instruction. There
is another instruction LBNE (Long Branch if Not
Equal) which will allow you to branch farther.
Also you must remember, when calculating how far
you need to branch, that the Program counter
will not contain the memory address of the BNE
instruction but the next instruction, which will
be 2 steps on. For instance: - If the _BNE
instruction is stored in memory address 15023
then the Programme Counter will contain the
number 15025.

Calculating the
branches is easy. You work

40

Offset for forward
out how many steps

you want to move forward (from the Programme
Counter) and store that number in the memory
address following the BNE instruction. To
branch backwards you work out how mah~ steps
back you want to move then subtract this number
from 256. The answer is then stored\:~ '.'." in the
memory address following the BNE instruction as
before.

Awkward isn't it? I keep telling you
that Machine Code causes severe mental pain but
you won't listen otherwise you would have taken
up a normal hobby like basket weaving.

To get back to the second programme we
just did, where we made the screen fill with
whatever key we pressed, you will have noticed
that what appeared on the screen was not always
the same as the key we pressed. There us a
simple answer to this and I will be dealing with
it when we look at how the Dragon inputs and
outputs information.

The second programme is the same as the
first but, after filling the screen with red
squares, instead of returning control to Basic
we added the following lines:-

6 Jump to the subroutine in the Basic Rom
starting at memory addres~ 32774. on completion
of this subroutine the programme will return and
the A accumulator will contain either O if no
key was being pressed or the value of the key if
one was being pressed.
7 Check accumulator A, if it contains O then
branch back to line 6. Go on to line 8
otherwise.
8 Load the X register with 1024 (top - left of
screen)
9 Jump back to line 3 (first programme)

we have used 3 new operation codes in
this addition to the first programme:-

41

J SR Jump to Subroutine which is exactly the
s ame as the Basic command. The CPU will jump to
a subroutine and continue until it finds a RTS
(return from subroutine) instruction. we used
I mmediate Addressing which means that the memory
address of the subroutine to be jumped to
follows immediately after the JSR operation
code. (2 memory locations required as it's a 16
BIT number.) The whole operation requires 3
memory locations.

JMP Jump which is the same as the Basic GOTO
c ommand. The CPU will go to a memory address and
carry on in sequence from there. Try and guess
what addressing mode we used.

BEQ Branch if Equal to zero. This
instruction caused the programme to branch if
t he A accumulator contained O. We can use it a
d ifferent way which I will explain later but for
now we know several instructions so let's see
how we use them in programmes.

42

P ROG RAf-K~ES

we're going to write several short
programmes. The idea behind them is that each
one will perform a certain function, like
clearing the screen, so that we can bolt these
together to form more complex programmes.
Hopefully that way, even if you don't understand
them, you'll be able to use them.

The way I have set them out is:-
on the left hand page will be the programme
listing.
on the right hand page will be an explanation.
The programme listing will be set out in 4
colwnns. The first column will contain the
Decimal numbers that you need to POKE into
memory using the short Basic programme we have
been using.
The second column will contain a line number for
reference.
The third column will contain the Mnemonic for
the operation code we are using.
The fourth column will contain the Data {if it
has a* in front of it) or the memory address
{if it has m in front of it) that the Op code
will use or an explanation.

At the top of the page will be the
programme title and a suggested starting address
{this will have to be altered to follow on if
you want to string programmes together).

At the bottom of the page will be the
last memory address used by the programme.

I have finished most programmes with a
RTS instruction to return control to Basic if
you want to test each one. In some cases, when
bolting programmes together, you may need to
delete this. Try experimentingll

43

PROG 1 CLEAR SCREEN

tart address 20000

· 34,128 1 LDA *128
:: 42 I 4 I 0 2 LDX *1024
.: 67,128 3 STA X Autoinc
: 40,6,0, 4 CMPX *1536
~: s I 249 5 BNE to 3
.7 6 RTS return

~n d address 20012

44

A nice easy one to start with but very
useful all the same.

We start by loading the A accumulator
with number 128 which is the graphics character
for a black square. We can put any character
here we like. simply alter the second Byte in
the programme.

In line 2 we load the X register with
the number representing the memory address of
the top left corner of the screen.

In line 3 we store the contents of A at
the memory address contained in the X register
and also Autoincrement X by 1 thus making it
point to the next screen location.

Line 4 compares X with the number 1536
to see if it has reached the bottom right hand
corner of the screen yet. It's 1536 not 1535
because after we have stored A at memory address
1535 (bottom right of screen) X will be
increased by 1 so the number we want to compare
with is 1535+1=1536.

If X does not equal 1536 then line 5
causes it to loop back to line 3.

If X does equal _ 1536 then line 5 sees
that the loop is complete and allows the
programme to proceed to line 6 where control is
returned to Basic. That's why you have a green
line across the screen. If we had stayed in the
M/C programme we would have had a nice clear
screen.

This was a very simple programme to fill
the screen with any graphics character you like,
or it can be a clear screen instruction. Now
let's put some stripes on it:-

45

PROG 2 STRIPES

3tart address 20012

134,239 6 LDA *239
142,5,0 7 LDX *1280
167,129 8 STA X Autoinc x2
140,5,32 9 CMPX *1312
38,249 10 BNE to 8
57 11 RTS return

Snd address 20024

46

By making the start address 20012 we
will overwrite the RTS instruction, of the las t
programme, and replace it with the first
instruction of the second programme.

with the .. graphics
the first memor y

character at, as
down the screen o n

Line 6 now loads A
character 239 and line 7 sets
address, we will store this
1280 which is about halfway
the left.

Line 8 stores the character, as in Prog
1, but this time we Autoincrement by 2. Thi s
means that X now becomes 1282 and the graphic s
character will be displayed every other space o n
the screen.

As well as Autoincrementing by 1 or 2 we
can Autodecrement, or decrease X, by 1 or 2 {see
Appendix A). There is a slight differenc E
between Autoinc and Autodec though. If we STA
using Autoinc we store A and then increase X b y
1 or 2 but in Autodec we reduce X by 1 or 2 an6
then store A. Be careful with this as it i s
easy to get confused.

The rest of the programme is the same as
the last finishing with a RTS instruction which
will return us to Basic and also leave us with a
green stripe.

Now we have a horizontal stripe, that we
can put anywhere we like by altering the start
and finish memory locations, let's try a
vertical stripe.

47

PROG 3 VERTICAL STRIPES

Start address 20024

134,159 11 LDA *159
142,4,31 12 LDX *1280
167,132 13 STA X
4 8,136,32 14 LEAX X+32
140,6,31 15 CMPX *1567
38,246 16 BNE 13
57 17 RTS return

End address 20039

48

Again we have overwriten the RTS of the
last programme. and also loaded the A accumulator
with a graphics character and loaded X with the
memory location where we want our display to
start (top right corner).

This time the STA instruction uses
REGISTER ADDRESSING. This means that A will be
stored at the memory address contained in the X
register. We use a Post Byte to indicate this
(see Appendix B) and in this case the Post BYTE
is 132.

We now come to the LEAX instruction
which means Load Effective Address. This will
load the X register(last letter of op code. LEAY
loads Y register for instance) with the contents
of another register. In this case we are using
an addressing mode that allows us to add a
number (32) to the X register. We do this by
loading X (LEAX) with the contents of X plus 32
(or any other number).

In lines 15 & 16 we do our normal
compare and branch routine which allows the LEAX
instruction in line 14 to increase X by 32 every
time. As there are 32 Characters to a line this
means that we will store A at the end of each
line. If we only increased X by 30 (LEAX X+30)
we would have a diagonal ~ine.

The LEA instruction is a very powerful
tool and we shall be using it again. Try
experimenting by altering the last Byte in line
14.

I will now show you how to scan blocks
of memory and display them on the screen. This
is useful for writing titles or searching for
information.

49

PROG 4

~~art address 20039

142,4,168 17
16,142,78,91 18
~66,160 19
167,128 20
16,140,78,103 21
38,246 22
~7 ,18~18 23

LDX
LDY
LDA
STA
CMPY
BNE
RTS

~o ,s2,69,B3, 24
$3,32,89,32,79,82,32,7$

~nd address 20070

50

WRITE TITLE

*1192
*20059
Y Autoinc
X Autoinc
*20071
19
and NOP
DATA

Things now become a little more complex.
Line 17 loads the X register with the memory
location of the place on the screen where I want
to start displaying my message.

Line 18 loads the y
address in memory where I
information I want to display.

register with the
am storing the

we now start to scan through that
information in line 19 by loading the A
accumulator with the information contained in
the memory address pointed to by Y. We will
also Autoinc Y so that we can scan through this
information.

Line 20 stores this information on the
screen and Autoincs X so that the information is
displayed across the screen.

Line 21 compares Y to see if we have
reached the end address of the stored
information. If we want to put a longer message
in we simply increase this number.

Line 22 causes the programme to loop
until all the information is read and displayed.

Line 23 returns to
contains 2 NOP (No Operation)
there to fill in space that we
next programme.

basic
codes
will

and also
that are

use in the

Line 24 is the actual data that we are
storing and is the ASCII codes for PRESS YORN.
we could store this information anywhere in
memory if we wished but we must Load Y with its
starting address in memory and then compare Y
with its end address so that the routine can
scan these memory addresses.

we can use a routine like this to scan
any area of memory to look for information or.

51

P_ROG 5 Keyboard scan

Slight change here:­

POKE 20056,126
POKE 20057,78
POKE 20058,103

This tells the CPU to Jump to memory address
20071. This is so it does not look at the data
we stored, starting at 20059, and think they are
instructions.

start address 20071

189,128,6 25 JMP m32774
39,251 26 BEQ 25
129,89 27 CMPA *89 (ASCII y)
38,3 28 BNE 30
126,78,122 29 JMP 33
129,78 30 CMPA *78 (ASCII N)
38,112 31 BNE 25
126,78,128 32 JMP 35

183,5,72 33 STA ml352
126,78,131 34 JMP 36
183,5,83 35 STA ml363

57 36 RTS return

52

we start by POKEING a jump into the last
programme so that the CPU does not look at the
data we stored and think it's instructions.

Line 25 then jumps to a subroutine in
the Basic Rom starting at memory address 32774.
This scans the keyboard to see if a key is being
presses. If a key is being pressed its value
will be loaded into the A accumulator and if not
zero will be loaded.

Line 26 checks to see if A contains zero
and if it does it loops the programme back to
line 25 to start again.

Lines 27 to 32 check to see if either Y
or N have been pressed. If not then the
programme loops back to 25 to start again. If Y
is pressed the programme jumps to line 33 which
causes the letter Y to be displayed on the
screen. - If N is pressed then the programme will
jump to line 35 and N will be displayed.

This is a very useful programme because
not only does it check the keyboard for input
but it also allows you to make decisions. You
can jump to anywhere in memory simply by
altering the memory addresses (last 2 Bytes) in
lines 29 or 32.

Let's now look at scrolling the screen.
There have been a lot of programmes in magazines
that scroll the whole screen up and down or side
to side so I thought I'd do something different.

53

PROG 6 SCROLLING

3tart address 20099

142,4,160 36 LDX *1184
166,128 37 LDA X Autoinc
183,4,191 38 STA ml215
166,132 39 LDA X
-t8 I 3 l 40 LEAX X-1
1. 67,132 41 STA X
48,2 42 LEAX X+2
140,4,192 43 CMPX *1216
38,243 44 BNE 39
48,1 45 LEAX X+l
140,39,16 46 CMPX *10000
38,249 47 BNE 45
126,78,131 48 JMP 36

End address 20129

54

Well that's the last programme for this
section. Try and work out how ~~ works
yourself. Line 40 subtracts 1 frq~ the x
register and line 42 adds 2 to x. we could have
used Autoinc and Autodec here but I ~anted to
show the use of the LEAX instruction t0 add or
subtract from registers.

Lines 45,46,47 are a simple delay loop
otherwise the screen would move to fast. X is
increased by 1 each pass of the loop until it
reaches 10000 and then the programme returns to
line 36. This gives you some idea of how fast
the CPU works. If you used basic in a FOR NEXT
loop to count to 10000 it would take very much
longer.

55

You can now use these programmes as a
basis for building up quite long routines. Try
and experiment with them, it's the best way to
learn. The only thing you can lose is your
temperll

All the programmes, so far, have used
low resolution graphics. We will now look at
how to use high resolution and the sound
facilities of the Dragon.

56

SAMUN PIE

If you look at the memory map on page 7
you will see an area from memory address 65280,
called G, labeled System use. This area
contains the SAM and PIA chips (Sarnun Pie, sorry
about that). These are the silicon chips that
control the computer and handle its Input and
Output. Although they are silicon chips it is
easier to imagine them as a set of memory
locations. we will look at them in turn.

First we will look at the PERIPHERAL
INTERFACE ADAPTERS (PIAs). These handle
communication between the CPU and the outside
world ie. the Keyboard, TV, cassette Recorder
etc. If we imagine these devices as memory
addresses the ones we are interested in are
65280 to 65283 and 65312 to 65315. 8 memory
addresses altogether and it does not seem many
to handle all that input and output. The way it
does it is rather clever. Look at the diagram
on the next page. There are 2 PIA chips but
each one contains 2 input/output ports so I like
to think of them as 4 separate devices. They
are normally Known as:-

PIAO A, PIAO B, PIA 1 A, PIA 1 B

As you can see each of these devices has
2 memory addresses and 3 internal 8 BIT (1 BYTE)
registers. These internal registers are known
as:-

CONTROL REGISTER
DATA DIRECTION REGISTER
PERIPHERAL DATA REGISTER

(CR)
(DDR)
(PDR)

only the Americans could have thought of
names like thatl I've never quite seen the
point of describing things with very long words
and then having to shorten them but I digress.

57

PERIPHERAL

FI;._ 0

65280
A -------

65281

65c. [2
B - . - -

65'"'Q"Z C:.vJ

. i t TJo.

5280

5281

·3282

~5283

"5312

.3313

~5314

5315

7

FIA 1

6531 2

65313

65314
--- -------
65315

Pe ri~he r a l dats register
Dat~ direction register

Control register·

Peripherol data register
Data dir~cti on re gister

Control register

FIG 3

PIA CONTEK TS

6 5 4 3 2 1 0

Keybord Row Joystick

Keyboard Column

Snd Int

Digital to .Analogue Pnt Cas

}fot

Video Lines Snd

Snd Cartridge!

58

The DDR and PDR share a common memory
address. How the CPU selects which one -to use I
will explain in a moment.

Each register consists of 8 B1'.£5 and we
will consider then as 8 separate switches . that
can be set on or off independently. The 8 BITS
are numbered as shown:-

Data-BIT 3

By putting a BINARY number in these BITS
we can set each BIT either ON with a 1 or OFF
with a O. For instance, the number 251
converted to a Binary number is 11111011. If we
store this number in memory address 65281 it
will switch on all the BITS except number 2
which will be switched off. By doing this we
can make each BIT responsible for a particular
function and by simply storing different numbers
in this memory location we can switch on or off
up to 8 separate functions.

The control Register (CR) will decide
which of the other 2 registers can use the
memory address they share. If Bit 2 is set to O
the DDR is selected and if BIT 2 is set to 1 the
PDR is selected. ·

The Data Direction register selects
whether each BIT is set as an Input or output.
storeing a O sets it to Input and 1 sets it to
output. once these Bits have been set, by the
computer at switch on, control is usually handed
back to the Peripheral Data register. .,, .

Fig 3 shows each of the registers ·along
with their normal contents immediately after the
computer has been switched on. ~·

59

The PDR at memory address 65280 is
=oncerned with the Keyboard Row input and also
the Joysticks. AO in BIT 1 means that the left
.Joystick is being fired and a O in BIT 0. means
that the right Joystick is being fired. These
Bits are also shared with the Keyboard Row
.inputs (which row of keys is being pressed) and
explains why in, some games, pressing keys has
the same effect as the fire button. When a key
.is pressed a O appears in the BIT corresponding
to the keyboard row that was pressed.

The only
the CR at memory
controls whether
BIT 3 which is
.enabled.

BITS - we are interested in in
address 65281 are BIT 2 which
the DDR or PDR is selected and

set to O when the sound is

PDR at 65282 is the Keyboard Column
input. When a key is pressed BITS are set in
this register corresponding to the column of the
key being pressed. As this memory address shows
the column and 65280 shows the row the computer
can tell exactly which key, or combination of
keys, is being pressed. However, the computer
clears this register as soon as it has made a
note of its contents so if you PEEK (65282) you
will always get a o. The information is stored,
however, in the bottom end of memory and we will
be looking at this in the next chapter.

CR at 65283 uses BIT 2 to select DDR or
PDR as before. BIT 3 is set to O when the sound
is enabled and Bit O controls the Interrupt
sequence. The CPU refers to this location 50
times a second as part of the TIMER and PLAY
function. If you set this bit to O Play
commands will go on for ever and the TIMER will
halt. This is a good way to cheat at games that
have a time limit.

The PDR at 65312 is most useful. BIT 0
LS the Cassette Input and BIT 1 is used by the

60

Printer. BITS 2 to 7 are used as a Digital to
Analogue converter which means that when the
sound is enabled feeding numbers into these bits
will produce sound so we can use them to play
music.

CR at 65313 BIT 2 selects DDR or PDR as
usual. BIT 3 controls the cassette remote. A 1
switches it on and a O switches it off. we used
this at the very beginning of this book.

The PDR at 65314 BITS 3 to 7 in
conjunction with the SAM chip control the video
display. we will be discussing these in detail
later and explaining how they decide what
graphics mode we are _in (PMODE 4, 1 etc). BIT 1
is used in conjunction with the digital to
analogue to produce sound.

CR at 65315 again uses BIT 2 to select
DDR or PDR. BIT 3 is the sound enable. When
this BIT is set to 1 sound is outputed to the TV
(BITS 4&5 must also be 1). BITS O and 1 are
used to Autostart cartridges if they are
present. You can stop a cartridge autostarting
by setting BIT O to O before inserting the
cartridge but I would strongly advise against
plugging in cartridges when the Dragon is
switched on as I already have one friend who
ruined his machine doing _this.

What all this means is that we can
control various input/output features of the
Dragon by storing the correct number at these
addresses. In practice the only ones we will
use are the sound, graphics and joystick ones.

The SYNCHRONOUS ADDRESS MULTIPLEXER or
SAM chip is another clever device. If the CPU
is the brains of the Dragon then the SAM directs
the traffic. There is a lot of data flying
about in the Dragon and lots of devices all
wanting to work at the same time. The SAM chip

61

<eeps everything in the correct order.

we will think of this device, once
'.1gain, as a set of memory addresses. The SAM
:·tas a set of functions that we are interested
i n. Each function has 2 memory addresses ie.
65494 and 65495. If we store any number (it
.Joesn't matter what) in the odd numbered address
l 65495) we will switch the function on and if we
~tore any number in the even numbered address
; 65494) we will switch it off. Fig 4 shows the
f unctions that we will be interested in. Don't
forget, even number addresses switch off - odd
;.umber addresses switch on.

VDG MODE addresses 65472 to 65477 in
.~onjunction with the PIA at memory address 65314
.:ontrol which Graphics Display Mode -the computer
i ses ie. PMODE 4 or normal screen for instance.
: here are 3 functions in the SAM to set and 5
3ITS in the PIA for each display mode. Fig 4
shows how each device should be set for each
·aode. on switch on or reset the computer
automatically selects the standard screen
display.

When these devices are set they control
1 device called a VIDEO DISPLAY GENERATOR (VDG).
!'his device will go to the area of memory
~eserved for graphics display, look what is
-stored there and turn it into a display to be
:;ent out to your TV. The VDG has its own set of
lnternal characters that it can display. To see
~.hese POKE 1200, (numbers from O to 255) and they
~ill be displayed on the screen. You will
notice these do not quite tie up with the normal
:\ SCII codes.

Addresses 64578 to 65491 control where
·ii_n memory the VDG starts to look for the screen
lisplay. This will normally be set to memory
~ddress 1024 but can be different if, for
i nstance, you are looking at different PAGES of

62

. {•"'

SYNCHRONOT~TS ADDRESS r :rL~rIF LF.X'SB-

/;ddress

65501
Memory Size 4k 16k 64k

65498
6¼97 s R1 65496 - C CPU Speed 65~95 s
65494 ~ RO

65491

Start Address for Display

6Su78
1654 77 s V2 65476 - C

65475 s
V1 Video Mode 65474 -C

65473 s VO 65472 - C

S= Set or On

c= Clear or Off'

63

graphics.

Addresses 65494 to 65497 control the
speed that the CPU works at. Normally the CPU
works at a speed of 8000 cycles per second if RO
and Rl are off. If however you switch on RO by
storing a number at address 65495 you will
double its speed. 2 things happen here.
Firstly the Dragon was designed to run at a slow
speed but if you are lucky you will have one
that is at a higher than standard specification
and it will run quite happily at this higher
speed. If your system refuses to function when
you use this command you're not one of the lucky
ones. secondly the CPU only works at double
speed over half of the memory map. The part
used by the basic interpreter and the cassette
input output. This means it will speed up your
basic but you won't be able to load or save any
programmes until you switch RO off.

If you switch Rl on the CPU will work at
double speed over the entire memory map and this
has to be seen to be believed. Unfortunately
the VDG cannot function at this speed so your TV
display will go haywire but if you have a large
number a figures to handle, in a Basic
programme, switching on Rl at the start and
switching it off at the end will really speed up
your program. The TV display will return to
normal as soon as you switch Rl off.

That's a brief outline
your computers memory map. Now
the bottom.

64

off the top of
let's look at

THE BOTTOM END

At the bottom end of the Dragons memory
map is an area from Oto 1023 reserved, by the
computer, for its own use. In it the CPU stores
information that it will need whilst running
programmes. For instance, at memory address 135
the CPU stores the value of the last key that
was pressed and in memory address 182 is stored
the current graphics mode. Although the CPU
controls this section we can either inspect its
contents or change them to suit our own
programmes. The best way I found to inspect
this area is to POKE and PEEK into it and see
what happens. The results can be quite
spectacular so make sure you don't have any
important programmes stored in memory because
they probably won't be there when you've
finished.

For those of you who are more faint
hearted I have listed some of the locations that
I know off:-

Most of these locations contain memory
addresses so they are 2 BYTES long. The MSB is
stored in the lowest location number and the LSB
in the highest.

For instance, to find the highest memory
available to Basic programmes type the
following:-

PRINT PEEK (39) * 256 + PEEK (40)

39 & 40 Highest memory space available to Basic
programmes.
25 & 26 Beginning of Basic programmes.
31 & 32 End of Basic programme.
68 & 69 current line number in Basic programme.
111 current device being used ie. 0 = VDU, -
1 = cassette, -2 = printer

65

Is cassette being used ie. O = no, l = . 20
:.nput,
. 35

2 = output

~. 78
179
182
183&184
s creen.

Value of last key pressed •
Foreground colour.
Background colour.
current graphics mode.
Start address of current graphics

~86&187 End address of current graphics screen.
~85 Number of Bytes in a row of graphics.
~89&190 X position.
~91&192 Y position.
276 Timer, cycles from O to 255 in about 5
s econds.
329 Sets Inverse graphics (same as SHIFT 0)
·1ormally 255 POKE with O for inverse.
· 36&137 Address of next location on screen.
~.55 Length of a line when outputing to
•:Jrinter (normally 80 characters).
~56 Position of printer head on line •
. J87 &488 Start of machine code programme after
l oading.
126&127 End of machine code programme + 1
: subtract 1 for actual address).
-~ 57&158 EXEC address of M/C programme.

These are
:.hat are useful.

just a few of the addresses
I hope you can find some more.

66

MORE PROGRAMMES

we now have an idea of how the Dragon
uses its Input/output and SAM chip. L~'s see
how we use them in practice. I shall ·.,use the
same programme layout as before but this time I
will assume that we are going to use some of the
programmes from within a Basic progra.IP~e. There
will, therefore, be a lot of Peeks and Pokes.

You may be wondering why I've not used
the High Resolution screen modes · so far. Well
there's a very simple reason for this. It's a
real pain. It's a lot easier, if you want fast
moving graphics in your Basic programme, to get
into the PMODE that you want and draw your
shapes using Basic and then use a short machine
code programme (like Prog 6) to move the screen
quickly.

But for those of you who insist on
struggling here is how you get into PMODE 4:-

First we need to set the SAM chip VDG lines. we
switch VO off, Vl on, V2 on. This is done by
storing any number at the following memory
addresses:- 65472 65475 65477 Infact we cannot
actually store anything at these addresses as
the SAM chip has no where to put anything. It
can, however, detect that something is trying to
address it and it takes the appropriate action.
That's why we can store any number we like.
You can either use the STA m65472 instruction in
M/C or Poke 65472,0 in Basic

After setting the Sam chip we then need to set
the PIA chip. We do this by storing the" number
253 (or 245) at memory address 65314. -·&13ain we
can use either the STA operation code ,-~or POKE
65314, 253 (or 245) • {~!;·

We are now in PMODE 4 but the high

67

resolution mode uses memory locations 1536 . to
7167 to store its information so we must again
set the SAM chip so that it looks at these
locations and not 1024 to 1535. (These locations
for the normal screen are set automatically
every time the computer is switched on.) so we
must store any number in the following memory
addresses:- 65479 65481 65482 65484 65486 65488
65490

there
r eturn
Basic.

we are now in PMODE 4
until something allows the
to Normal screen. ie
Tricky isn't it?

and will stay
programme to

you return to

A much easier trick is to use the
sernigraphic mode 24. You won't find anything
about this in the Dragon manual. To get into
this mode we must store a number in memory
addresses 65472 65475 65477

Mode 24 uses memory locations 1024 to
7167, which is the s~e start address(l024) as
t he normal screen so we don't need to set t he
SAM again. we can also ignore the PIA for the
moment. As you can see this is a much easier
mode to get into.

In this mode the screen is divided into
32 spaces across by 192 spaces down. The top
l eft hand corner uses memory address 1024 and
the bottom right corner uses memory address
7167. TO see how we put information onto this
screen we first need to look at how a graphics
character is made up.

Look at the diagram on the next page.
Characters are made up from a block of Pixels 2
x 4. In the normal screen mode this is
displayed as a whole block but in mode 24 it
displays it one row at a time. If we want to
put a red line on the mode 24 screen we just
store in each memory address the code number for

68

the graphics block which has a top line that is
red. ie 191. we can make up quite complex
shapes using this method.

/ "' I I
I)

Letter A

The simplest way to understand this is
to try it so let's make a row of space invaders
appear. They will be made up of blocks as shown
in the diagram and we will just repeat this at
every other location across the screen.

I/ I/ ;/I/I;

Space Invader

programme to
are -supposed
the Mode 24
24 and then
place our

we will write a short
display a row of characters, that
to look like space invaders, across
screen~ First we will get into mode
clear the screen. we will then
invaders in a row across the middle.

69

PROG 7 SPACE INVADERS

~tart address 22000

~_83,255,192
l. 83,255,192
183,255,195

: 34,128
',42 I 4 I 0
··, 67, 128
-40,28,0
·_79, 249

L42,16,32
:__ 34,191

6 7,129
. _40, 16, 64
i-.8 I 249

·234 I 20
-:67,129
l. 40,16,128
38,249

:.34,24
67,129

·; _;_40 I 1 7 I 64
.t8, 249

l.,34, 159
l. 67 ,129
140,17,128
38,249

1"89,128,6
J9, 251
57,

1
2
3

4
5
6
7
8

9
10
11
12
13

STA
STA
STA

LDA
LDX
STA
C~PX
BNE

LDX
LDA
STA
CMPX
BNE

m65472
rn65475
rn65477

*128
*1024
X Autoinc
*7168
6

*4128
*191
X Autoinc
*4160 ..
11

14 LDA *20

X 2

15 STA X Autdinc x 2
16 CMPX *4224~. _,., .

17 BNE 15

18 LDA *24
19 STA X Aut6inc x 2
20 CMPX *4416
21 BNE 19

22 LOA *159
23 · STA X Autoinc x 2
24 CMPX *4480
25 BNE 23

26 JSR m32774
27 BEQ 26
28 RTS return

~d address 22065

70

Lines 1 to 3 set the SAM chip to mode
24. Lines 4 to 8 are used to clear the screen ,
as before, by storing graphics character 128
(black block) at every screen location.

Lines 9 to 13 store the graphics
character 191 (red block) at every other scree n
location between 4128 and 4159, which will go i n
a line across the approximate middle of the
screen.

In lines 14 to 17 we use the graphic s
character T (reversed) to put a line across the
screen. This will only print the top 2 pixels
so in fact we get a - not the full T. see the
diagram on the preceding page.

We now come to the clever bit. Lines 18
to 21 store the graphics character X (reversed)
on the next 6 of the 192 lines on the screen.
w11at this does is to display the bottom part o f
the x. It will appear to have the top of the T
mixed with it and is easier to see thar.
describe.

Lines 22 to 25 put two yellow lines
underneath.

You can see that we can make all sorts
of shapes by mixing l~nes of characters but
there is a snag. The characters will appear on
the screen in the position that they would be in
if in the normal mode. What this means is that
we must try and work out what part of the
character would be displayed at the position we
are going to put it at on the screen. What I
have done is to take a copy of the PRINT@ GRID
in the Dragon manual and draw 192 lines across
it. This makes it a little easier to calculate.

If you still find this difficult to
grasp add 64 to all of the numbers in lines
9,12,16,20,24. This will have the effect of

71

~oving the display down 2 lines and should
i llustrate what I mean.

We did not need to keep loading the X
r egister with a new value every time we printed
a new line because, if you work it out, it
a lready has the correct memory address, for the
s tart of the line, in it.

This display can be moved from side to
s ide using a routine similar to PROG 6. There
l1ave been dozens of programmes published in
magazines showing how .to move graphics screens
1_lp and down or side to side so I won't go into
t hem. I always recommend people to study other
peoples programmes. It's the best way to learn.

72

We can now look at making sounds come
out of the TV which is fairly easy.

Switching on the Audio is the easiest
way to start. This is the same as the Basic
command AUDIOON. It is controlled by the PIA at
memory location 65315. If you Peek this you
will find the number 55 stored in it. We need
to set bit 3 of this location (refer back to the
chapter showing the PIA layout).

we can do
at this address
instruction, in
65315,63.

this by storing the number 63
either by using the STA

a M/C programme, or by POKE

we also need to set Bit 3 of 65281 by
storing 188.

That was fairly simple but to make
sounds we need to go a little further.

The sound output is affected by the
contents of the PIA at memory address 65312.
This is the Digital to Analogue converter. But
first we need to set 65315 65281 & 65283. The
following program shows how altering the
contents of 65312 affects the sound output.

73

PROG 8 SOUND

start address 23000

182,255,35 1 LDA m65315
138,8 2 ORA *8
183,255,35 3 STA m65315

182,255,1 4 LDA m65281
132,247 5 ANDA *247
183,255,1 6 STA m65281

182,255,3 7 LDA m65283
132,247 8 .ANDA *247
183,255,3 9 STA m65283

134,20 10 LDA *20
183,255,32 11 STA m65312
76 12 INCA
129,255 13 CMPA *255
38,248 14 BNE 11
32,244 15 BRA 10

End address 23035

74

Lines 1 2 & 3 take the contents of
65315, whatever it is, and make sure that bit 3
is on. It does this by using a Logical OR
instruction, which I will explain on ~he next
page. Line 3 then places it back in memory
address 65315. What we are in fact doing is to
make sure that Bit 3 in memory address 65315 is
set on without altering any of the other Bits.

Lines 4 5 & 6 and 7 8 & 9 do the same
thing to memory addresses 65281 and 65283 but
this time we make sure Bit 3 is set off. In
this case we do this by using the Logical AND
instruction which I will also explain on the
next page.

From line 10 onwards we load A with 20
which we then store in the Digital to Analogue
converter in the PIA at memory address 65312.

we then increase the number in A by 1
and loop back to line 11 to store it again.
This then load the Digital to analogue converter
with an increasing number. When A reaches 255
it loops to line 10 where it is set to 20 and
the whole process repeats.

I'm afraid you will have to press the
reset button to stop it. In a normal programme
you would have this continuing for a certain
time.

Try altering the number 255 in line 13
and number 20 in line 10.

75

The logical OR and AND instruction are
very useful for altering certain Bits of a
binary number without altering the rest. An
illustration is the best thing to show you.

110111 = 55
OR 001000 = 8

Becomes 111111 = 63

Bit 3 has been set to on

10111100 = 188
AND 11110111 = 247

Becomes 10110100 = 180

Bit 3 has been set to off.

76

WRITING PROGRAMMES

If there was an easy way to write M/C
programmes I'd market it and make a fortune.
Unfortunately there's not so we have to do it
the hard way. Sitting down with a pencil and
paper and writing down what you want to do first
is the best way. When you Know what you want to
do break it down into small logical steps. I
use a flow diagram like this:-

screen Display

scan Keyboard

Branch to Subroutines

sound Beep Flash cursor

When you have reached this far write
short M/C routines for each part then string
them together. I like to use lots of
subroutines but you have to be careful to keep
track of where you are.

The easiest thing to do is write your
programmes in basic and use short M/C routines
for things like fast scrolling of the screen. I
don't bother with the USR0 function instead i
just write an EXEC (whatever address the machine

77

._- ode is at) and make sure my M/C ends with a RTS
··p code.

You can put your M/C in as part of your
;jasic programme using a DATA statement to store
t he Op Code numbers then just READ them and POKE
t hem into memory as part of the first few lines
~f your programme.

78

ASSEMBLERS AND DISASSEMBLERS

We can now look at a very useful device
called an Assembler, sometimes known as an
Editor Assembler. It is similar to the oragori
Basic Interpreter in that it converts the
language that we type on the screen into machine
code that the CPU can understand so it must be a
machine code programme that we can load into the
Dragon.

What it does is to take the operation
code mneomi, that we have been using (LDA STA
etc), and converts them into the operation code
numbers that the CPU uses. This means that we
do not have to remember all the op code numbers,
which is a good idea for a start, but it does
far more than this. It can work out what
addressing mode we are using which I find a
tremendous help. But the best thing, I find, is
its ability to work out all your branch and jump
instructions without you having to work out Post
Bytes and Offsets.

You can get Assemblers either on
cassette or cartridge. I personally use the
MACE editor assembler, on cartridge, which I
find very good. I use a cartridge because it
leaves a lot of memory free to develop long M/C
programmes and also I can· leave it permanently
plugged in to be called up when I need it.
However, cartridges are expensive and unless you
are going to do a lot of serious programming I
would get an Assembler on tape for about a third
of the price. All Assemblers have . different
methods of working but let's take a broad look
at how to use them.

When you use your assembler ,,.what you
type in will appear on the screen in 4 ,.,separate
columns or FIELDS (This is the term <' commonly
used). In the first Field (column) you can put

79

a LABEL that the assembler can use as a
reference point. ie Start would indicate the
start of the programme but can also be used as a
reference point for a Branch instruction.

Example:- BNE to Start

This saves us having to
offset as the assembler does it for
not have to put a Label in the
(column), it is optional.

work out the
us. You do
first Field

You must put - something in the second
Field as this is used to hold the Operation Code
Mneomi (LDA STA etc). The assembler will
convert the mneomi into the operation code
number that the CPU will recognise.

The third Field is used to store the
OPERAND or number/memory address that the
operation code is to use. You must always have
a number in this Field also.

The fourth and final Field is used to
store remarks and comments. The assembler
ignores this column and it is used to store
comments and memory joggers for the programmer.

When typed in an assembler program will
look something like this:- The first line
contains a line number for reference.

FIELD! FIELD2 FIELD3 FIELD4

001 START LDA
002 STA
003 JMP

*157 ·
1024
START

Start of programme
Start of screen
Return to begginin

After we have typed the programme in
like this we then tell the Assembler to assemble
or convert this into M/C and place it in the
Dragons memory. We then have a full working M/C
programme without most of the difficult working

80

out of Offsets etc.

I said a full working M/C programme but
as we all know computer programmes very rarely
work first time. This is were the EDITOR part
of the assembler comes in. useing this we can
examine and alter our programme to try and debug
it. How easy this is depends on how good your
assembler is and what sort of mess you have made
of the programme.

As well as the normal Operation Code
Mneomic there are certain commands· that only the
assembler recognises. These are things like ORG
or origin which tells the assembler where you
want it to store the programme in memory.

The Editor Assembler is a very powerful
programme and you will need one if you wish to
progress in M/C programming.

The DISASSEMBLER does exactly the .
opposite. It is another programme that looks at
a machine code set of operation code numbers and
converts them back to mnemomics. The
disassembler is very useful for looking at other
M/C programmes that you wish to examine. You
can purchase Disassemblers on cassette and there
seems to have been a glut of them published in
magazines just lately. I must admit though that
I haven't seen one that really impresses me and
after disassembling a programme you will still
have a lot of head scratching to do in order to
work out what program flow the original
programmer had in mind. Still that's half the
fun.

one problem I find with disassemblers is
that they are usualy fairly long and take up a
fair bit of memory so that when you load in the
M/C programme you wish to examine you usually
write over the top of your disassembler and the
results can be quite remarkable.

81

What I do is to check where in memory my
disassembler is and then load in the M/C
programme into a safe area of memory using
offset loading (see Dragon manual page 135).

82

ODDS AND THE ENDS

I've left this section for all the
various odds and ends that I thought about after
writing the rest of the book. For instance:­
Tandy Colour Computer M/C programmes can be
converted to run on the Dragon fairly easily.
The Tandy Colour Computer is almost exactly the
same as the Dragon. Main areas of difference
are in the Basic Assembler Rom. Try looking for
JSR operation codes in your Tandy programme.
The Tandy uses a routine starting at address
40970 to check the keyboard. Try changing this
to JSR 48101. JSR 40970 checks the Joysticks
(try JSR 48466). JSR 40962 outputs a character
to a device (try JSR 48299). The Rainbow
magazine (if you can find one) is a good source
of information.

To save a machine code programme on the
Dragon use the comrnand:-

CSAVEM"prograrn name",start address, End address,
Program entry address

Start and end addresses are where your
programme starts and finishes in memory.
Programme entry address (not difference between
start and finish as stated in the Dragon manual)
is the address at which ·your programme starts
and is usually the same as the start address.
some programmes start in the middle and then
jump back to the start address.

To find out where a M/C programme is in
memory type the following after loading your
programme:-

PRINT PEEK(487)*256+PEEK(488) ENTER =start

PRINT PEEK(l26)*256+PEEK(l27)-l ENTER =end

83

?RINT PEEK(l57)*256+PEEK(l58) ENTER =entry

If you want to examine a self
('> rograrnrne on cassette then try loading
g.n OFFSETT ie:-

CLOADMtlprogramrne name",1000

start
it with

That will load it into memory 1000 BYTES
~dgher than it should be and should cure the
1roblem.. It won't work there but you will be
,jble to examine it by PEEKING.

Well that about wraps it up. You should
i.ow know a little bit about machine code. I
nope you've found it interesting. There is a
~ot more to learn. We've only looked at about
~-1alf of the commands and addressing modes. If
-,ou want to go deeper into the subject try
t eading the following:-

0809 Assembly Language Programming by Lance A
~eventhal is the best but a little expensive.

JHE 6809 COOK BOOK is also good and cheaper.

~809 MICROCOMPUTER PROGRAMMING &
with experiments is good for
?ractical experimenters.

INTERFACING
the more

And now you can go back and read again
~11 those magazine articles about M/C. You may
~nderstand them now. And don't forget, the best
~ay to find out about machine code is to
€xperiment. GOOD LUCK.

84

APPENDIX A

COMMON OPERATION CODES

Decimal Op codes for different address modes

INH
ABX 58

Adds the contents of A to X and store in X
IMM DIR EXT IND

ADDA 139 155 187 171
ADDB 203 219 251 235
ADDD 195 211 243 227

Adds contents of memory to contents of
accumulator specified by last letter

ANDA
ANDB
ANDCC

IMM
132
196
28

DIR
148
212

EXT
180
244

IND
164
228

LOgically ANDs the contents of memory with
specified accumulator

REL
BEQ 39

Branches if zero
.

REL
· BHI 34

Branches if higher

REL
BLO 37

Branches if lower

85

REL
BNE 38

Branches if not equal

REL
BRA 32

~ranch always

REL
BSR 141

Branch to subroutine

CLR
CLRA
CLRB

INH DIR EXT IND
15 127 111

79
95

~LR loads memory with zero
~LRA/B loads accumulator with zero

CMPA
CMPB
CMPX

.
IMM
129
193
140

DIR
145
209
156

EXT
177
241
188

IND
161
225
172

Gompares with specified accumulator/register

DEC
DECA
DECB

.
INH DIR EXT IND

10 122 106
74
90

~ecreases the contents of memory or accumulator
rey l

86

INC
INCA
INCB

INH DIR EXT IND
12 124 108

76
72

Increases the contents of memory or accumulator
by 1

DIR EXT IND
JMP 14 126 110

Jump to memory address

DIR EXT IND
JSR 157 189 173

Jumps to subroutine at specified memory address
.

LDA
LDB
LDD
LDX

IMM
134
198
204
142

DIR
150
214
220
158

EXT
182
246
252
190

IND
166
230
236
174

Loads accumulator/register

INH
MUL 61

Multiplies A by B place result in D

INH
NOP 18

No operation does nothing but increase programme
counter by 1

.
IMM DIR EXT IND

ORA 138 154 186 170
ORB 202 218 250 234
ORCC 26

Logically ORs the contents of memory with

87

specified accumulator
INH

RTS 57

Returns from subroutine
STA
STB
STD
STX

stores
memory

SUBA
SUBB
SUBD

DIR EXT
151 183
215 247
221 253
159 191

contents

IMM
128
192
131

DIR
144
208
147

IND
167
231
237
175

of

EXT
176
240
179

accumulator/register

IND
160
224
163

in

subtracts memory from specified accumulator/
register

INH
TFR 31

Transfers contents of A to B
.

88

APPENDIX B

POST BYTES

Think of the Post Byte as 8 bits and set
them as shown in the chart below. Bits 5&6
specify the register and should be set as shown
below the chart. - means that contents of Bit
is unimportant.

BIT NO.
7 6 5 4 3 2 1 0
1 0 0 0 0 0
1 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0

ADDRESSING MODE

Autoincrement by 1
Autoincrernent by 2
Autodecrement by 1
Autodecrernent by 2
Accumulator B offset
Accumulator A offset
8 Bit offset

1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

16 Bit offset
Accumulator D offset
PC 16 BIT offset
Extended Direct

6 5 set Bits for Register
0 0 X register
O 1 Y register
1 O U register
1 1 s register

Here are some common Post Bytes in decimal

Autoincrement X by 1
Autoincrement Y by 1
Autodecrement X by 1
Autodecrement Y by 1

Autoincrement X by 2
Autoincrement Y by 2
Autodecrement X by 2
Autodecrement Y by 2

89

128
160
130
162

129
161
131
163

APPENDIX C

SOME USEFUL ROM ROUTINES

48101 Check Keyboard & place result in A

46004 Restart Basic

48466 Checks the Joystick

48691 Turn on cassette relay

48604 Turn off cassette relay

48744 Prepare cassette for writing

48615 Prepare for data input

48658 Put out contents of A to cassette

48557 Input 1 character from tape to A

48299 Write contents of A to screen

48053 Blinks cursor

-1 ·

., I
<)

.,
·,:

F.-:. I

I
I
I
11

I
I

• • I
I
I

~
I

• ~ .. .,

f ---·
·•

	scan-001
	scan-002
	scan-003
	scan-004
	scan-005
	scan-006
	scan-007
	scan-008
	scan-009
	scan-010
	scan-011
	scan-012
	scan-013
	scan-014
	scan-015
	scan-016
	scan-017
	scan-018
	scan-019
	scan-020
	scan-021
	scan-022
	scan-023
	scan-024
	scan-025
	scan-026
	scan-027
	scan-028
	scan-029
	scan-030
	scan-031
	scan-032
	scan-033
	scan-034
	scan-035
	scan-036
	scan-037
	scan-038
	scan-039
	scan-040
	scan-041
	scan-042
	scan-043
	scan-044
	scan-045
	scan-046
	scan-047
	scan-048
	scan-049
	scan-050
	scan-051
	scan-052
	scan-053
	scan-054
	scan-055
	scan-056
	scan-057
	scan-058
	scan-059
	scan-060
	scan-061
	scan-062
	scan-063
	scan-064
	scan-065
	scan-066
	scan-067
	scan-068
	scan-069
	scan-070
	scan-071
	scan-072
	scan-073
	scan-074
	scan-075
	scan-076
	scan-077
	scan-078
	scan-079
	scan-080
	scan-081
	scan-082
	scan-083
	scan-084
	scan-085
	scan-086
	scan-087
	scan-088
	scan-089
	scan-090
	scan-091
	scan-092
	scan-093
	scan-094
	scan-095
	scan-096
	scan-097
	scan-098

